Microstructure, Tensile and Creep Properties of Ta20Nb20Hf20Zr20Ti20 High Entropy Alloy

نویسندگان

  • Natalya Larianovsky
  • Alexander Katz-Demyanetz
  • Eyal Eshed
  • Michael Regev
چکیده

This paper examines the microstructure and mechanical properties of Ta20Nb20Hf20Zr20Ti20. Two casting processes, namely, gravity casting and suction-assisted casting, were applied, both followed by Hot Isostatic Pressing (HIP). The aim of the current study was to investigate the creep and tensile properties of the material, since the literature review revealed no data whatsoever regarding these properties. The main findings are that the HIP process is responsible for the appearance of a Hexagonal Close Packed (HCP) phase that is dispersed differently in these two castings. The HIP process also led to a considerable increase in the mechanical properties of both materials under compression, with values found to be higher than those reported in the literature. Contrary to the compression properties, both materials were found to be highly brittle under tension, either during room temperature tension tests or creep tests conducted at 282 °C. Fractography yielded brittle fracture without any evidence of plastic deformation prior to fracture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Microstructure, Creep, and Tensile Behavior for Ti-5Al-45Nb (Atomic Percent) Fully-b Alloy

The microstructure, tensile, and creep behavior of a Ti-5Al-45Nb (at. pct) alloy was evaluated. The main objective of processing and characterizing this alloy was to obtain the constituent properties of a fully-b Ti-Al-Nb alloy to aid in modeling the tensile and creep properties of twophase orthorhombic + body-centered-cubic (O + bcc) alloys. A second objective was to compare the tensile and cr...

متن کامل

Characterization of the microstructure, tensile and creep behavior of powder metallurgy processed and rolled Ti-6Al-4V-1B Alloy

This work investigated the microstructure and elevated-temperature (400-475C) tensile and tensile-creep deformation behavior of a powder metallurgy (PM) rolled Ti-6Al-4V-1B(wt.%) alloy. The PM rolled Ti-6Al-4V-1B alloy exhibited a duplex microstructure, and it did not exhibit a strong α-phase texture compared with the PM extruded Ti-6Al-4V-1B alloy. The PM rolled Ti6Al-4V-1B alloy exhibited gre...

متن کامل

Metallurgical and mechanical properties of laser cladded AlFeCuCrCoNi-WC10 high entropy alloy coating

In spite of excellent corrosion resistance, good ductility and low cost of AISI 316 austenitic stainless steel, the low hardness and poor mechanical charecteristic of material restricts its applicability in several industrial services. To improve upon mechanical properties AlFeCuCrCoNi-WC10 high-entropy alloy coatings were deposited via laser cladding on austentic stainless steel AISI 316 subst...

متن کامل

The Effect of Sheet Processing on the Microstructure, Tensile, and Creep Behavior of INCONEL

alloy 718 (IN 718) were characterized to identify processing-microstructure-property relationships. The alloy was sequentially cold rolled (CR) to 0, 10, 20, 30, 40, 60, and 80 pct followed by annealing at temperatures between 954 °C and 1050 °C and the traditional aging schedule used for this alloy. In addition, this alloy can be superplastically formed (IN 718SPF) to a significantly finer gra...

متن کامل

Comparison of the Microstructure, Tensile, and Creep Behavior for Ti-24Al-17Nb-0.66Mo (Atomic Percent) and Ti-24Al-17Nb-2.3Mo (Atomic Percent) Alloys

The effect of small molybdenum additions, 0.66 and 2.3 at. pct, on the microstructure, tensile, and creep behavior of a nominally Ti-24Al-17Nb (at. pct) alloy was investigated. The alloy containing 2.3 at. pct Mo contained higher body-centered-cubic (bcc) phase volume fractions, which was expected as Mo stabilizes the bcc phase. Constant load, tensile-creep experiments were performed in the str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017